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Abstract
Synthetic biology is an umbrella term that covers a range
of aims, approaches, and techniques. They are all brought
together by common practices of analogizing, synthesizing,
mechanicizing, and kludging. With a focus on kludging as the
connection point between biology, engineering, and evolution,
I show how synthetic biology’s successes depend on custom-
built kludges and a creative, “make-it-work” attitude to the
construction of biological systems. Such practices do not fit
neatly, however, into synthetic biology’s celebration of ratio-
nal design. Nor do they straightforwardly embody Richard
Feynman’s “last blackboard” statement (1988) that without
creating something it cannot be understood. Reflecting fur-
ther on the relationship between synthetic construction and
knowledge making gives philosophy of science new avenues
of insight into scientific practice.
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The dream is that well-characterized components can be easily as-
sembled to generate novel genetic regulatory circuits. The reality is
that this is hard to accomplish.

— Haseltine and Arnold (2007: 15)

The aim of this article is to investigate the philosophical
character of synthetic biology through an examination of its
knowledge-making practices. I will ask a series of questions
about how knowledge is made in synthetic biology, what sort
of knowledge is produced, and what the relationship is, in fact,
between knowledge and making. These are practical epistemic
questions that are being discussed in very distinctive ways
within synthetic biology, as those under its banner lay claim to
a loosely bounded technological and epistemological territory.
The answers to these questions have important implications for
how scientists and philosophers think about knowledge mak-
ing in general.

Knowledge-Making Practices in Synthetic Biology

Synthetic biology is often given a potted origins narrative
that emphasizes its historic dependence on DNA recombi-
nation techniques and genetic manipulation (e.g., Benner and
Sismour 2005; Drubin et al. 2007). This observation is in part
due to Waclaw Szybalski’s announcement of synthetic biol-
ogy in 1974 and 1978 (Szybalski 1978). As this issue demon-
strates, a richer and deeper history may be in the making (see
also Morange 2009). But for many purposes, synthetic biol-
ogy can be straightforwardly described as an extension of the
biotechnological capabilities of molecular biology, especially
in the form of genomics. It is the latter field that most directly
gives rise to a general notion of synthetic biology as biological
engineering, and this is achieved on the basis of the molecular
quantification afforded by large-scale sequencing and microar-
ray projects. Roger Brent, now the president, CEO, and direc-
tor of the independent, non-profit Molecular Sciences Institute
(Berkeley, CA), anticipated the rise of synthetic biology as a
consequence of the most basic achievements of genomics:

The genome projects, with their promise of complete parts lists,
have caused would-be engineers to start turning up in biology
labs. It is unclear whether the first products of these cellular hack-
ers, typically recreations of cellular clocks, switches, oscillators,
etc., will themselves have any immediate positive impact on biol-
ogy.. . . However, the engineers who build these devices will affect bi-
ology profoundly.. . . Even absent stimulus from biologists, this drive
to perform engineering with a rigorous design component will spur
development of biological simulations and the collection of informa-
tion to populate them (Brent 2000: 176).

In this scenario, engineering approaches emerge as a
response to parts lists, but in the process engineering be-
comes a shaper of techniques, data gathering, and research
orientation: “The overwhelming physical details of natural
biology . . . must be organized and recast via a set of design

rules that hide information and manage complexity” (Keasling
2008: 65). It is in this sense of rationally engineering biological
systems that synthetic biology finds its rallying cry, with the
strong claim being made that never before has biology found
itself in the position of being able to overcome the irrationality
of nature with human-made rational design (e.g., Boyle and
Silver 2009; Mukherji and van Oudenaarden 2009). The three
engineering Rs of rationality, robustness, and reliability are
contrasted with the whimsicality, inelegance, and variability
of natural systems (Pleiss 2006). While engineering certainly
contributes to the practices of synthetic biology, my claim is
that it is doing this in more complicated ways than might be
envisioned in the “pure” engineering ideal.

While it is common to talk about synthetic biology as
if there were a distinctive and coherent set of practices un-
der the label, in reality it consists of a number of different
streams of practice. These differences have implications for
how and what sort of knowledge is produced (O’Malley et al.
2008). The first stream is one that can be described as DNA-
based device construction. It starts with DNA synthesis and
works upwards. Many of its proponents emphasize standard-
ization, decoupling, and abstraction as key routes to knowledge
making in synthetic biology (e.g., Knight 2003; Endy 2005;
http://parts.mit.edu). All of these practitioners are committed
to decomplexifying biology in order to gain full control of the
biological processes being synthesized (Ferber 2004; Guido
et al. 2006; Voigt 2006).

The second stream involves genome-driven cell engineer-
ing. Here, synthetic biologists focus on streamlining and mod-
ularizing genomes through minimal genome analysis, whole-
genome synthesis, and the transplantation of “foreign” or mod-
ified genomes into cells (Cello et al. 2002; Smith et al. 2003;
Gil et al. 2004; Chan et al. 2005; Glass et al. 2006; Pósfai et al.
2006; Lartigue et al. 2007, 2009). These practitioners conceive
of the genome as a simplifiable, relocatable module that runs
cellular processes and simply needs some easily obtained con-
nectivity in order to be plugged into a cell chassis (Heinemann
and Panke 2006).

The third stream focuses on protocell creation, using
micelles, lipid self-assembly, and vesicles with ribozymes
(Szostak et al. 2001; Deamer 2005; Noireaux et al. 2005;
Forster and Church 2006; Luisi et al. 2006; Solé et al. 2007).
Using top-down, bottom-up, and in-between approaches, these
synthetic biologists work on constructions such as minimal
cells, designed to approximate living cells at their most basic
level. Although protocell synthesizers make many allowances
for the complicated and unpredictable outcomes of evolution,
they are keen to minimize such complexities because that
makes artificial reconstruction more effective.

Another way of categorizing synthetic biology is to view
it over time and see distinctions between the “first wave”
of construction of very simple parts and modules, and a
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second wave—only just begun—of whole system construction
(Purnick and Weiss 2009). But just as important for this dis-
cussion as the differences in streams of practice are the shared
knowledge-making dynamics in synthetic biology. One char-
acteristic that brings the field together is the drive to replace
or displace complexity with rationally determined, highly pre-
dictable systems. And although there are differences between
the various schools of synthetic biology, all the approaches
discussed above combine a similar set of steps in order to
achieve the goal of constructing designed and decomplexified
systems. Although these steps are carried out in different ways,
they characterize today’s efforts in synthetic biology and con-
struct a certain attitude to biological knowledge production.

Analogizing
Instead of channeling its flow of inquiry from the biologi-
cal phenomenon of interest to its disassembly and then its
modeling and comprehension, synthetic biology sets out from
system design to gather and construct relevant components,
and thereby create a biological machine that is regarded as
the instantiation of knowledge (Ferber 2004). One of the most
explicit accounts of why biological practice should work this
way can be found in Yuri Lazebnik’s classic 2002 discussion,
“Can a biologist fix a radio?” In this article, Lazebnik sets
out the biologist’s view in contrast to the engineer’s view, and
argues that today’s biologists must take the latter perspective
in order to understand and do things effectively with biologi-
cal systems. Traditional biological methodologies of catalogu-
ing parts, finding connections between them, and qualitatively
modeling function will not enable systems to be improved and
understood, he argues (Lazebnik 2002). This will require the
standardized, transferable language of engineers in reference
to the total quantification of elements in the system.

Curiously, however, Lazebnik admits that the radio cir-
cuitry diagram he uses to exemplify his argument is not of the
radio in the study. “The diagram of this radio was lost,” he
says (2002: Fig. 3, legend), and this explains why the radio is
still broken. This is curious because Lazebnik claims that the
radio is “an open book” to any engineer. The advantage of
the engineering approach is meant to be that it would enable
the engineer to fix the radio easily and quickly by detecting
damage within the well characterized system through stan-
dard electronic tests and tools. Diagnosis should be followed
by the repair or replacement of any dysfunctional components
with standardized parts. One of the answers to Lazebnik’s own
question in his paper’s title seems to be, “Engineers can only
fix a particular radio if they have a plan of it.” The fact his
Russian radio is apparently unrepairable, despite Lazebnik’s
familiarity with radio circuitry, may say something about the
problems of componentry and variability, and the need for
more qualitative expertise in particular systems to be able to
diagnose and intervene in the problem machinery.

The difficulties of finding identical replacement parts is
not often addressed by the second type of analogizing, which
focuses on components and levels of the systems rather than
on practice itself. Electronic networks, pathways, circuits, and
especially modules are used as conceptual templates for bi-
ological components (Andrianantoandro et al. 2006; Canton
et al. 2008). Synthetic biology is in the process of shifting from
the construction of individual components to the creation of
functional modules. Its aim is eventually to construct entire
complex systems composed of standardized modules, but at
the moment this is still very much a hit-and-miss affair (Voigt
2006; Purnick and Weiss 2009). The context dependence of
any designed part means that the uniformity and exact re-
producibility of function—even in a redesigned and simpli-
fied system—cannot yet be expected (Andrianantoandro et al.
2006; Serrano 2007; Arkin 2008).

One of the best-known approaches to synthetic biology,
the DNA-based device stream, conceptualizes biological de-
vices as modular, standardized, interchangeable, stable, and
predictable (Endy 2005; Canton et al. 2008; Shetty et al. 2008).
Modularity poses many challenges—for this school and all
synthetic biology. Part of the problem is the way in which
modules are defined in engineering disciplines. As systems
biologist Jeremy Gunawardena points out:

In software engineering, modularity means “putting a boundary
around some set of things” to set it apart from the rest of the sys-
tem. Separated modules then communicate through controlled inter-
faces. This strategy breaks big problems into little problems. But are
biological modules the same? Can they be enclosed and made to
communicate in restricted ways? Or are biological modules just too
permeable? (Gunawardena 2008)

In an innovative paper on experimental synthetic biology
in bacterial networks, Mark Isalan and coauthors (2008) con-
clude that

Our results indicate that partition of a network into small mod-
ules . . . could in some cases be misleading, as the behavior of the
module is affected to a large extent by the rest of the network in which
they are embedded.

Even though the existence of modules is crucial to the
success of engineering approaches in biology (Hartwell et al.
1999; Andrianantoandro et al. 2006; Heinemann and Panke
2006), modularity may be a theoretical dictate that biology
itself fails to obey (Wolf and Arkin 2003). A number of other
disanalogies between engineered and biological systems have
been suggested. The first is that evolution is not design, and
that there are numerous overly complex products of evolution,
many of which rational design processes cannot simply repli-
cate (Arkin 2008). Connections between designated modules
are often unknown, and the complexity of evolved systems is
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not maskable. Abstraction from these systems and modules is
therefore limited (Sorger 2005).

Many synthetic biologists hope that modularity issues can
be overcome by greater standardization (e.g., Canton et al.
2008; Peccoud et al. 2008). There are also, however, more
general objections to the engineering analogy. Lazebnik (2002)
rebuts three commonly raised problems. In response to the ob-
jection that biology cannot handle simple systems so it will
not be better at handling complex systems, he argues that en-
gineers are undeterred by complex systems because they have
developed formal languages and computational power. To the
second objection, that engineering approaches are not appli-
cable to cells because cells are fundamentally different from
the objects studied by engineers, Lazebnik counters with the
claim that biologists are superstitious and retain vitalist ten-
dencies. Moreover, he says, radios and other designed systems
have deep similarities to living systems. To the third common
objection, that biologists know too little about cells to ana-
lyze them in the way engineers analyze their systems, Lazeb-
nik says we know enough to put together formal models and
find out at least the processes that are missing in our existing
explanations.

While the assumptions underpinning these responses are
questionable, the more important factor to note for my dis-
cussion is that Lazebnik is not advocating synthetic biology
per se but the formal and quantitative mathematical modeling
that often accompanies it. If anything is generally distinctive
of synthetic biology at the rhetorical level, it is its claim to go
beyond mere modeling and to treat biological systems as fully
constructible objects.

Synthesizing
Many discussions of synthetic biology contrast it to analysis,
which involves the deconstruction or individualization of parts
of systems (e.g., Benner and Sismour 2005). Such practices are
often linked to “discovery-oriented” approaches. Synthesis,
however, is characterized as being about the fabrication or con-
struction of biological systems, in which parts are integrated
into designed constructs (Ferber 2004; Marguet et al. 2007).
In practice, of course, synthetic biology is as analytic as it is
synthetic. To get started on their synthesizing activities, all syn-
thetic biologists deconstruct systems into parts. In the footer
of every Web page of the BioBricks site is the slogan “making
life better, one part at a time” (http://syntheticbiology.org/).
And, clearly, synthetic biology in general would not be possi-
ble without the knowledge base delivered by so-called analytic
approaches. However, synthetic biologists do make a special
claim for an epistemology of “constructing” or making as the
source of real knowledge and see this as the trump statement of
synthesizing (e.g., Drubin et al. 2007; Weber and Fussenegger
2009).

Mechanicizing
Synthesis is too bland a word, however, to describe the efforts
and rhetoric of construction synthetic biology. Another major
characteristic of the field is its aim to put things together in a
rational way and make them work predictably. This practice
of making things work in a controlled manner is also an obvi-
ous descriptor of engineering practices. It involves the art of
combining (re)constructed parts, often using circuit analogies,
into predictably functioning devices. Transcriptional regula-
tors are some of the best-known constructions so far produced
by synthetic biologists (Becskei and Serrano 2000; Elowitz and
Leibler 2000; Gardner et al. 2000), and a range of other de-
vices have been built on the basis of other biological processes
(Andrianantoandro et al. 2006; Issacs et al. 2006; Drubin et al.
2007; Purnick and Weiss 2009).

I have described these efforts to make things work as “art”
for a number of reasons.1 The first is that as paradigmatic
instantiations of synthetic biology, such constructions are not
a matter of copying biology, but of recreating it. Speaking
of the famous three-gene repressilator, David Sprinzak and
Michael Elowitz (2005: 443) say that such devices are “much
simpler . . . and fail to operate as reliably [as natural clock
circuits] but they provide a proof of principle for a synthetic
approach.” They did not aim to construct a natural biological
system exactly as found in the “wild,” but to make something
with an approximately similar function and a more streamlined
design. These engineers hope to learn more by constructing
an oversimplified inaccurate pendulum clock than they can
by disassembling a sophisticated Swiss timepiece (Sprinzak
and Elowitz 2005: 447). This strategy is then applied to the
pressing need to bypass evolutionary complexity.

Combinations of well characterized biological parts to create syn-
thetic wholes not only drives towards applications faster but also
finesses past the underdetermination and crosstalking nonmodularity
of natural systems. With the advent of facile synthesis and reusable
modules, the evolutionary bricolage can be studied or avoided as
needed. (Church 2005: 2)

As well as recreating biological systems through simpli-
fied design, synthetic biologists have to cope with the het-
erogeneity of natural biological systems (Elowitz et al. 2002;
Blake et al. 2003; Paulsson 2004; Raj and van Oudenaar-
den 2008). Biological synthesizers must compensate for (and
sometimes take advantage of) the fluctuation of processes
within cells, and the variability between genetically “identi-
cal” cells in “identical” environments. Andrea Loettgers (this
issue) discusses the issue of “noise” in biological systems and
how this is dealt with and reinterpreted by some synthetic bi-
ologists as facilitating the evolution of developmental mecha-
nisms or robustness to environmental perturbation (Eldar et al.
2007; Çaǧatay et al. 2009). It is increasingly well accepted that
combining different parts with known functions into a system
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will not necessarily lead to predictable, additive functioning
of the new system. Entirely new capacities and behaviors may
emerge through such combination (Simpson 2004; Purnick
and Weiss 2009).

A further complication is that the repositories for stan-
dardized parts are well known for the non-standard nature of
their parts (Peccoud et al. 2008; Katsnelson 2009). In this re-
spect, synthetic biology is not unlike software standardization.
“The nicest thing about standards is that there are so many
of them to choose from,” joked operating system designer
Andrew Tanenbaum (1988: 254).2 All of this heterogeneity
(natural and artefactual) has consequences, however, for the
type of engineering that can be done in synthetic biology, and
make it more similar to an intuitively creative “art” than the
rational “plug and play” of predictable properties to which it
is analogized (Koyabashi et al. 2004). The failure of designed
systems due to molecular fluctuations and context dependence
may greatly enable understanding of noisy phenomena and
contextual interactions (Andrianantoandro et al. 2006), but
design will have to become biologically flexible, plastic, and
complex in order to work.

Combinatorial synthesis and directed evolution are likely,
therefore, to be necessary complements to or even replace-
ments of rational design, which—even when it works—
requires multiple iterations of reconstruction and redesign
(Blake and Issacs 2004; Haseltine and Arnold 2007;
Michalodimitrakis and Isalan 2008; Koide et al. 2009). In
combinatorial design, separate components are assembled in
vitro and then placed in randomized combinations in cells,
which are then screened for the desired function (Guet et al.
2002). This can work for simplified circuit behavior but may
not be suitable for large networks with multiple functions,
because of the extensive screening required (Haseltine and
Arnold 2007). Directed evolution, a solution aimed against
high failure rates in rationally engineered proteins, attempts to
improve designed genetic circuits through targeting mutations
and recombinations (Francois and Hakim 2004; Yokobayashi
et al. 2002). High-throughput screening selects for the desired
function from the variety of circuits generated in the first step.
However, what is produced by these partly randomized design
processes is something that is much more of a bricolage—it is
a product of tinkering rather than of pure rational engineering.
For this reason, some synthetic biologists continue to insist on
the rational design of “proper safeguards against evolution,”
because evolution “interferes” with the design of cells (Hold
and Panke 2009: 2; emphasis added).

Kludging
Rational design is clearly taken seriously by advocates of en-
gineering approaches in biology. Such design is usually taken
to be the opposite of the kludge—a colloquial term for a
workaround solution that is klumsy, lame, ugly, dumb, but

good enough (http://en.wikipedia.org/wiki/Kludge).3 Kludg-
ing emphasizes the achievement of a particular function rather
than the rational pathway to that function. It does not matter
how inelegant the process is to get there, or how inefficient
the relationships between some of the componentry and cir-
cuitry. If the system works, that is the ultimate vindication
of construction. Synthetic biology’s design processes always,
so far, end up as iterative rounds of trial, error, and pragmatic
solutions—sometimes referred to as “debugging,” “tweaking,”
“retrofitting,” or “parameter tuning”—to make systems behav-
ior fit design specifications (Andrianantoandro et al. 2006;
Barrett et al. 2006; Heinemann and Panke 2006; Marguet et al.
2006; Haseltine and Arnold 2007; Serrano 2007; Ellis et al.
2009). Kludging, therefore, may be the best way to under-
stand the constructs so far produced within the field. Rather
than exemplifying rational, elegant, and efficient design, many
devices work because they are kludges.

[U]nlike other engineering disciplines, synthetic biology has not de-
veloped to the point where there are scalable and reliable approaches
to finding solutions. Instead, the emerging applications are most of-
ten kludges that work, but only as individual special cases. They are
solutions selected for being fast and cheap and, as a result, they are
only somewhat in control (Arkin and Fletcher 2006: 4).

This is not just the case for the engineering of biolog-
ical systems, of course. Kludging of various sorts goes on
constantly in electronic and software engineering. One such
practice is the “debugging” of software to make it work more
effectively. Working around the glitches in programs, called
“patching,” can contribute over half the cost of software de-
velopment (Henkel and Maurer 2007). Microsoft’s “Patch
Tuesday,”4 the monthly release of software kludges to re-
pair dysfunctional or vulnerable programs, reached its highest
levels ever in 2009 (Keizer 2009; Leffall 2009). Some soft-
ware engineers use “adaptation” to describe the process of
how a kludge fits, augments, and works around the constraints
and shortcomings of systems and their operating environments
(Koopman and Hoffman 2003). “Proper kludge building,” says
a tongue-in-cheek computational engineering discussion of it,
requires a balance between producing “a completely impossi-
ble machine” and coming up with “just an ordinary computer”
(Granholm 1962). In this aim of producing something novel
and remarkable, excessive “departmentalization” can aid cre-
ative kludging, because little crosstalk between departments
(or modules, or institutions) raises the likelihood of creative
and even redundant design upon design (Granholm 1962).
Pushing this suggestion a bit further leads to the idea that
engineering, biology, and evolution all need kludging in im-
portantly constructive ways.

My argument follows this line of thinking. Kludging
should not be interpreted as a failure of synthetic biology,
but as a highly creative and effective process. An alternative
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“backronym” for kludge or kluge is, in fact, “knowledge and
learning used for good effect” (Koopman and Hoffman 2003:
73). Not only does kludging make things work, often in the
context of non-standardized parts and insufficient knowledge;
it also provides the conceptual connection between biology,
engineering, and evolution. Organisms can be conceived of
as layers of “clever hacks” that are the product of ad hoc
tinkering efforts that persist because they work (Huang and
Wikswo 2006). As the philosopher of evolutionary kludging,
Stephen Jay Gould, was fond of arguing, evolution constantly
produces kludges: the history of evolution is in fact a history
of kludging. He believed that kludges, which he termed exap-
tations and spandrels (using biological examples), increased
with the evolved intricacy of the organism (Gould and Vrba
1982; Gould 1997). One of his favorite examples was bird
feathers, which he argued were adaptations for thermoregu-
lation, and subsequently exaptations for catching insects and,
eventually, flight (Gould and Vrba 1982).

PZ Myers, well known as a biology blogger, also argues
from code-writing experience that life should be understood as
“a collection of kludges taped together by chance and filtered
by selection for functionality” (2008). He offers an insightful
discussion of evolutionary kludges in relation to the genetics
of body segmentation in arthropods.

If a fly were software, it’s software that has been patched and patched,
and patches have been put on patches, until almost all vestiges of the
original code have been obscured in the tweaks. It’s the antithesis of
planning and design—it’s ad hoc co-option and opportunistic incor-
poration of chance enhancements. It’s evolution. . . . The complexity
of developmental regulation isn’t a product of design at all, and it’s
the antithesis of what human designers would consider good planning
or an elegant algorithm. It is, however, exactly what you’d expect as
the result of cobbling together fortuitous accidents, stringing together
helpful scraps into an outcome that may not be pretty, but it works.
That’s all evolution needs from developmental processes: something
that works well enough, no matter how awkward or needlessly com-
plex it may seem. (Myers 2008)

In standard nonsynthetic biology, biologists kludge all
the time in experimental situations. The general idea of exper-
iment as a designed, efficient, and linear inquiry, conducted by
narrowing a research question into a refined hypothesis that
obtains a specific answer, is an over-idealized representation
of practice (Radder 2003; Creager et al. 2007; de Regt et al.
2009). Certain philosophies of science have treated experimen-
tation and “the” scientific method this way, and many scientists
continue to believe this is how science should be practiced.
Elegance is highly rated in experimental biology (e.g., Mazia
1953, on Lederberg; Botstein 2004, on Herskowitz; Oransky
2008, on Beadle, Tatum, and Horowitz), but this does not
mean that it describes what goes on in practice. A few philoso-
phers have discussed the kludging that goes on in biological
and other sciences (Wimsatt 2007; Goodwin 2009; Lenhard

and Winsberg forthcoming). If scientific experimentation is
understood as kludging, then activities such as “ad hoc” hy-
pothesis modification cannot be rejected solely because they
deviate from the linear path to knowledge (e.g., Popper 1963;
Bamford 1993). Building up and modifying auxiliary intercon-
nected models is a crucial aspect of scientific activity, and this
involves kludge-like logic (Lakatos 1968–69; Forster 2007).
Especially when grappling with multiple data sets, fitting them
together creatively is likely to produce more powerful results
than will testing a single prediction (Gregory 2009).

Max Delbrück’s (1979: 76–77) “principle of limited slop-
piness” is relevant here. He used it to describe the necessity
in scientific practice of not being too rigorous or controlled
in experimentation because this could prevent novel insights.
Being flexible and responsive to the system of study and its
variability could lead to totally unexpected findings, he sug-
gested (Delbrück 1979; see also Root-Bernstein 1989; Jan and
Jan 1998; Grinnell 2009 for additional cases). Experimental
kludging and model “fudging” do not make biologists inferior
to engineers, however, because as I have already argued, many
sorts of engineers kludge to make things work. The proclivity
for kludging may be deeply rooted because of how the mind
itself evolved as a kludge (Linden 2007; Marcus 2008), and
many socio-mental activities, such as systems of morality, can
be usefully described as kludges (see, e.g., Stich 2006).

When thought about in these broader ways, it becomes
obvious that kludging can be understood as an inescapable
aspect of a pragmatic approach to knowledge and construction.
The intriguing fact remains, however, that synthetic biology is
in many respects antikludge: it wants nature and engineering
to be elegant and efficient (e.g., Endy 2006, in Economist
2006). This has to be understood within the broader context of
scientific practice in which synthetic biology is located.

Knowledge-Making Relationships

Looking at synthetic biology more widely, against the back-
ground of general biological practice, brings in the theme
of disciplinary relationships, and the relationships between
knowledge and making. Both of these broader views of syn-
thetic biology are important to understand how it works and
whether it is doing anything new or distinctive.

Disciplinary Relationships
The abstract for the meeting on which this thematic issue is
based suggested that “synthetic biology has emerged as a new
discipline.” The situation is not quite so straightforward, how-
ever, and as shown above there is a considerable variety of
descriptions of what synthetic biology is. For some practition-
ers it is an approach—a way in which to gain a perspective on
living systems and to be able to intervene in them more effec-
tively (e.g., Drubin et al. 2007). For others, synthetic biology is
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a toolbox that can be put to work in any relevant biological re-
search program (Michalodimitrakis and Isalan 2008; Deamer
2009). For those with strong ideas about making biology into
a type of engineering, synthetic biology is a field, discipline,
or a disciplinary nexus (Arkin 2008; de Lorenzo and Danchin
2008). For many observers and participants, the salient fea-
ture of synthetic biology is its application power, in that it
will enable the discovery and production of new drugs, forms
of energy, and waste disposal (Church 2005; Serrano 2007;
Weber and Fussenegger 2009).

Although it seems clear that new understandings of “dis-
cipline” are emerging with all the new fast-growing areas of
postgenomic biological investment (Powell et al. 2007), it is
also obvious that in order to be able to understand synthetic
biology we need to conceive of it in relation to its cousin, sys-
tems biology. Systems biology is often touted as the necessary
successor to genomics. Genomics is conceived of as being
largely about sequencing, whereas systems biology is thought
of as making sense of all the data in functional and integrated
ways (Auffray et al. 2003; O’Malley and Dupré 2005; Deamer
2009). For many commentators, systems and synthetic biology
are two sides of the same coin, embodying “fundamentally dif-
ferent but complementary outlooks” (Breithaupt 2006; Koide
et al. 2009: 297; Minty et al. 2009). A number of distinctions
are made to clarify this relationship; a key one is that systems
biology is more concerned with formal abstractions whereas
synthetic biology focuses on instantiated mechanisms (NEST
2005; Sorger 2005; Barrett et al. 2006). Another distinction on
offer is that systems biology is knowledge driven and synthetic
biology is application driven or pulled (Church 2005). In this
formulation, genomics (conceived as data) enables systems bi-
ology (primarily producing models), which enables synthetic
biology (focused on practical achievements).

Some of the most publicized achievements and applica-
tions of synthetic biology involve metabolic engineering. The
biosynthesis of artemisinin, an effective antimalarial that is
produced in sweet wormwood plants (Artemesia annua), is a
case in point. Because plant extract production is costly, an
alternative means of production was sought through engineer-
ing an artemesinin pathway into yeast and Escherichia coli, re-
sulting in the production of precursor compounds (artemesinic
acid and amorphadiene) that could then be synthesized with
normal chemical techniques into artemesinin (Martin et al.
2003; Ro et al. 2006; Keasling 2008). The commercial pro-
duction of proteins in cells has for some decades been a source
of therapeutic enzymes (e.g., insulin), and now metabolic en-
gineering has a list of other success stories in pharmaceuti-
cal and agricultural applications (Chatterjee and Yuan 2006;
Marguet et al. 2006; Drubin et al. 2007). Metabolic engineer-
ing may deploy protein engineering and synthetic biology as
tools through which to enhance metabolic performance (Tyo
et al. 2007).

Many metabolic engineers describe their efforts as ratio-
nal because they involve the knowledgeable and purposeful
alterations of an organism’s genome and biochemical path-
ways in order to achieve a specified metabolic output (e.g.,
Nielsen 2001; Khosla and Keasling 2003; Vermuri and Aris-
tidou 2005; Tyo et al. 2007). Yet for some commentators,
metabolic engineering is insufficiently rational and the sort of
practice that synthetic biology has transcended.

Metabolic engineering typically involves the exploitation of the whole
cell. It also has to cope with a very high complexity that is typically
not amenable to rational analysis. In other words, it has often relied on
‘tinkering’ rather than rational ‘design-based’ engineering, frequently
leading to only minor re-engineering of cellular properties (NEST
2005: 28).

In the case of artemesinin, the metabolic engineering that
was carried out required the addition of a number of genes
of different origin in order to produce the relevant enzymes
and the desired reactions (Prather and Martin 2008). In an
enhanced version of the engineered host cell, the introduction
of extra protein scaffolds was able to control metabolic flux and
reduce overproduction stress and toxicity build-up (Dueber
et al. 2009). And, even though the production of the desired
precursors has been achieved, all the reaction steps have still
to be understood (Muntendam et al. 2009). The main reason
for all the acclaim of this exemplar is that it did work, despite
the cobbling together and imperfect knowledge. It is difficult,
therefore, to see metabolic engineering as an inferior type of
engineering—especially if strictly rational engineering would
have been unable to produce the desired result.

What we see in the rise of synthetic biology is the devel-
opment of genetic and metabolic engineering in the context
of the integrating approach of systems biology (Purnick and
Weiss 2009). This ramping up of engineering efforts through
systems knowledge includes many more general and older
practices than the “newness” of synthetic biology indicates.
There is no denying, however, that for many practitioners it is
valuable to distinguish the activities of synthetic biology from
this broader context of practice and knowledge. Making such
distinctions enables disciplinary formation, channels attention
(positive and negative), and, above all, funding (always pos-
itive) to particular characterizations of the bodies of practice
associated with synthetic biology.

But another, more epistemic, distinction can be made
by thinking about metabolic and other biological engineering
strategies in relation to synthetic biology.

metabolic engineering generally requires more than simply throw-
ing enzymes together in a cell. Achieving a synthetic goal (here, a
strain that produces a particular product) requires the management
of complex metabolic and regulatory processes. In pursuit of this
goal, one cannot help but learn about metabolism and its emergent
behaviors, including the regulation of metabolism and the extent to
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which enzymes drawn from various sources can be combined inde-
pendently. So, synthesis drives discovery and learning. (Benner and
Sismour, 2005: 538)

Here, the links that are being drawn between construc-
tion and knowledge are the hallmark of synthetic biology’s
distinctiveness: its focus on making as true knowledge, usu-
ally uttered with the intention of distinguishing constructive
synthesizing practices from more general processes of data
gathering and the generation of model-based understanding.

Figure 1.
Richard Feynman’s “last blackboard,” written at Caltech shortly before his
death in 1988. The relevant quote is in the top left-hand corner. Courtesy of
the Archives, California Institute of Technology.

Making is True Understanding
Synthetic biologists frequently cite the Nobel Prize winning
theoretical physicist Richard Feynman for his statement that
“What I cannot create, I do not understand” (Feynman 1988;
Fig. 1; see also Drubin et al. 2007: 252; Marguet et al. 2007:
608).

This adage echoes (and is perhaps an unacknowledged use
of) a claim made by the Italian philosopher Giambattista Vico
(1668–1744), that “truth and making are reciprocal” (1710, in
Miner 1998: 63).5 Only the Maker, in this case a divine one, can
have true knowledge of phenomena from the inside; humans
can gain knowledge only from the outside, first by dissecting,
then by constructing (Miner 1998; Costelloe 2008).

There are many oddities about how this statement is used,
even when its theological implications are set aside. Astro-
physicists have considerable understanding of the physical
characteristics of far away galaxies despite their inability to
construct them materially. Biologists appear to understand a
great deal about biological systems even when they “merely”
observe and experiment rather than construct them de novo.
And synthetic biology does not yet have the ability to create
enduring reproducing life from scratch, and may never de-
velop such capabilities. Does this diminish its achievements
and mean that useful biological understanding has not been
and will not be produced? Perhaps this limitation means that

synthetic biologists are thinking of partial rather than compre-
hensive understanding. But if we think of a factory producing
electronic products and see assembly-line workers putting to-
gether componentry, neither synthetic biologists nor anyone
else would think of the workers as having a thorough under-
standing of the electronics of the parts they construct. Even if
a factory worker produces a whole system, it is unlikely that
all the knowledge that went into the design and invention of
the item somehow becomes available to the assembler through
assembling (some of which will be done mechanically or even
robotically). This sort of assembly is, in fact, a standardiza-
tion potential celebrated in synthetic biology, where it is argued
that engineers at different levels of the synthesized system will
need only to know the inputs and outputs of the device, not how
it works (Alon 2007; Endy 2008; Canton et al. 2008; Yildirim
and Vidal 2008). But for most scientists and philosophers,
knowledge and construction appear to have much more com-
plex, iterative, and inclusive relationships, such that giving an
epistemically privileged role to “making” cannot be warranted.

Moreover, the Feynman statement needs to be understood
within the context of his own, complex attitude to science and
engineering. Feynman did not by and large construct the sys-
tems he sought to understand. But he did advocate a “Babylo-
nian” approach to physics in which the emphasis was on mak-
ing mathematical systems work, rather than on their rigor and
deductive beauty (Feynman 1965). Babylonian logic works
along these lines:

I happen to know this, and I happen to know that, and maybe I know
that; and I work out everything from there. . . . The [mathematics of
physics] is like a bridge with lots of members, and it is overconnected;
if pieces have dropped out you can reconnect it another way (1965:
47; order of sentences reversed).

This pragmatic bent allows mathematical kludging at the
expense of formal elegance, and illustrates the potential for
the design process to be quantified and mathematical without
starting from fundamental axioms and being rational from
beginning to end.

Feynman also suggested, however, that the production of
kludges in engineered systems did not mean causal knowledge
had been produced: “Naturally, one can never be sure that all
the bugs are out, and, for some, the fix may not have addressed
the true cause” (1986: Appendix F). Feynman wrote this in
his appendix to the report on the Challenger disaster in 1986,
in which he criticized top-down design. After playing a piv-
otal role in the investigation into the disaster (Feynman and
Leighton 1988; Vaughan 1996), Feynman wrote his own ap-
pendix to the official report (1986). In it, he argued very much
against the spirit of the “knowledge = making” statement in re-
lation to top-down engineering. He did seem to hold out hope
of detailed causal knowledge arising from bottom-up engineer-
ing. His criticism of top-down engineering and his distinction
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between causal knowledge and practical construction provide
limited support for the “knowledge = making” claims being
made by synthetic biologists and attributed to Feynman. From
mathematical and engineering perspectives, Feynman seemed
to be suggesting that knowledge production is only sometimes
driven or assisted by the construction of objects, and that de-
sign should be attuned to phenomena and practical necessity,
not the elegance of the relationships between principles.

Knowledge Making Conclusions

Synthetic biology is an interesting exemplification of the ten-
sion between rational ordering and untidy making do. The
rhetoric of pure engineering appears to function as a strategy
of discipline formation, which needs to be contrasted against
the technical achievements (quite remarkable) and failings
(less advertised) of synthetic biology so far. This question of
whether kludging can be overcome or whether it lies insepara-
bly at the heart of both life and biological practice is perhaps
the general research question that synthetic biology is address-
ing (even if the “field” does not see it that way). The issue of
whether synthetic biology can continue to work within these
tensions or whether it needs to resolve them may not need to
be addressed while the tension is as productive as it currently
is. A corollary, of whether synthetic biology needs a special
epistemological and disciplinary status in order to deliver its
promises, is probably more pressing. Disciplinary status brings
about social achievements, such as financial and institutional
investment, without which even the best approaches never be-
come practical realities. This question will repay philosophical
and historical scrutiny as we seek to understand the nature and
implications of disciplinary formation in the postgenomic era
of biology.

Synthetic biology has resurrected some old philosophical
debates about the nature of life, and given them a rather dif-
ferent set of answers. These have more to do with the ability
of scientists to intervene in biological systems than the nature
of the phenomena themselves. Through its very practical ap-
proach, synthetic biology is offering highly informative lines
of insight into the philosophical understanding of scientific
practice. The notion of kludging, tied to iterativity and explo-
ration (O’Malley, in review), may more aptly describe scien-
tific endeavors than do standard notions of rigorous hypoth-
esis testing and methodological principles. Philosophy will
certainly have to focus on the actual practices of synthetic bi-
ology if it wants to work out what is being achieved and how.
In that process, a great deal about scientific knowledge and its
making may be learned.
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Notes
1. For an interesting discussion of synthetic chemistry as an art, see Nicolaou
et al. (2000).

2. This quote is also attributed to Ken Olsen, founder of Digital Equip-
ment Corp (e.g., Arkin 2008: 774), who is more famous for having pre-
dicted in 1977 that homes would not need computers (for details, see
http://www.snopes.com/quotes/kenolsen.asp).

3. There are several competing accounts of the origin and meaning of kluge
(commonly used in North America) or kludge (more common in the UK),
and the Wikipedia entry brings together most of these accounts with original
references.

4. Patch Tuesday is often followed by “Exploit Wednesday,” when hackers
anticipate and subvert the patch releases to expose Microsoft even further
(Leffall 2007).

5. Vico’s statement is often interpreted to mean verum ipsum factum—“the
true is the made” (e.g., Costelloe 2008: 7). I am indebted to Werner Callebaut
for making this very interesting connection between Feynman and Vico.
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